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Conformations of Linear
Chains. Systematics and
Suggestions for
Nomenclature

ABSTRACT
There are six categories of calculated favored dihedral angles in
linear MnX2n+2 chains. The Prelog-Klyne nomenclature is not
helpful for classifying them, and we propose the following labels
and symbols: A, anti, reserved for torsional angles within a few
degrees of 180°; T, transoid, ω = 165°; D, deviant, ω = 150°; O,
ortho, ω = 90°; G, gauche, ω = 60°; C, cisoid, ω = 40°. With the
exception of C, all of these categories have been observed in
alkanes, perfluoroalkanes, or oligosilanes.

In introductory organic chemistry texts, conformational
minima are described for n-butane. The preferred torsional
angles ω are 180° (anti, A) and ∼(60° (gauche, G).1 These
minima are due to the existence of intrinsic rotational barriers
around single bonds, present even in ethane.2 This simple
and generally recognized situation applies when the lateral
substituents on a linear chain are very small, e.g., in n-alkanes
and oligosilanes, as observed3 in polyethylene and calculated4

for polysilane, (SiH2)n, but it has recently become clear that
it is not general for MnX2n+2 chains.5,6

In very severely crowded chains (e.g., X ) tert-butyl7), in
those in which some backbone valence angles are smaller
than tetrahedral (e.g., thioethers8), and in other more complex
cases, deviations from the usual 180° and (60° angles are
frequent, and the Prelog-Klyne nomenclature9,10 is then
standard: 0° < |ω| < 30°, syn-periplanar (sp); 30° < |ω| <
90°, synclinal (sc); 90° < |ω| < 150°, anticlinal (ac); 150° <
|ω| < 180°, antiperiplanar (ap). Potential energy minima at
the borderline values, |ω| ) ∼90° and ∼150°, are unfortu-
nately common in MnX2n+2 chains with substituents X larger
than H, making this notation unhelpful. This has contributed
to a proliferation of symbols and notation for the conforma-
tions of polysilanes, SinX2n+2. The purpose of this comment

is to point out the existence of six quite clear-cut categories
of favored dihedral angles in MnX2n+2 chains with X * H, such
as perfluoroalkanes and polysilanes, and to suggest a set of
labels that preserves as much as possible of the current usage
(we recognize that our list may not exhaust future intermedi-
ate conformations).

As the size of the substituents X in an oligomeric or
polymeric linear chain (MX2)n is increased relative to the
M-M bond length, repulsive interactions between X atoms
in backbone positions 1 and 3 become important. It has long
been recognized11 that the exactly planar A geometry then
becomes a transition state between two minima with ω =
(165°. In (MX2)n chains, these structures have been calculated
for permethylated oligosilanes12 and observed for perfluori-
nated polyethylene,13 which has two crystalline forms with
ω = 166° and 168°. We will term these conformations
transoid, T.

Similar interactions between groups X located in backbone
positions 1 and 4 lead to a splitting of the gauche states into
minima with ω = (55° (G) and ∼(90°(ortho, O).14,15 Until
recently there has been little experimental evidence for the

FIGURE 1. Favored dihedral angles and their proposed labels.
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O conformation in MnX2n+2 chains,16 but it has now been
observed directly in C4F10

17 and Si4Cl10,18 and is also calculated
to exist in C4Me10, Si4Me10, and Si4(SiH3)10.5

For longer alkyl substituents X, the situation becomes even
more complicated.19 Now, not only the CH2 group next to
the backbone, but also the neighboring one may be involved
in interactions between substituents. As a result, for particular
local conformations of the alkyl substituents, in molecules
such as Me3Si-SiEt2-SiEt2-SiMe3 certain T and G minima
are calculated to disappear, and in their place appear new
conformations with greatly reduced dihedral angles. For
these, we have proposed6 the labels deviant20 (D, ω = 150°)
and cisoid21 (C, ω = 40°). The crystalline polymers [(n-
butyl)2Si]n and [(n-pentyl)2Si]n are known to adopt a helical
conformation with ω = (154° (approximately a 7/3 helix),22

which we identify as D, but no observations of the C
conformation have been reported so far.

For many polymers, the distinction between A, T, and D,
or O, G, and C conformations may seem unimportant,
because easily observed polymer properties other than the
crystal structure may not depend greatly on the backbone
conformation. It is known from experiments23 and calcula-
tions24 that the σ-σ* excitation energy depends strongly on
the backbone conformation, but many saturated polymers
absorb only in the vacuum UV, and little is known about their
electronic spectra. However, polysilanes, polygermanes, and
polystannanes absorb in the near-UV region. Their readily
observable first σ-σ* absorption peak shifts dramatically to
the blue as the backbone dihedral angle ω is reduced from
180° to smaller values, and this is easily understood in simple
terms.25 The existence of A, T, and D bond conformations,
and of conformations involving mixtures of these rotational
states, probably explains the multiplicity of ordered phases
with differing UV maxima, observed recently for several
polysilanes.26,27

Listed in Figure 1 is the entire array of presently recog-
nized, permitted rotational minima and the symbols which
we suggest for use in describing these conformations: A, anti,
reserved for torsional angles within a few degrees of 180°; T,
transoid, ω = 165°; D, deviant, ω = 150°; O, ortho, ω = 90°;
G, gauche, ω = 60°; C, cisoid, ω = 40°. With the exception of
the planar A conformer, these backbone conformations are
all chiral and appear as enantiomeric pairs. If the members
of the pairs need to be referred to individually, we recom-
mend notation such as T+ (right-handed helix, ω = +165°)
and T- (left-handed helix, ω = -165°).

The dark segments in Figure 1 indicate that bond eclipsing
does not occur in stable conformers of linear chains. In
certain constrained systems it is observed, however, and we
propose the labels S, syn, for ω = 0° and E, eclipsed, for ω =
120°.
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